[td=5,1,385]
Age_group
Age_group
[td=76]Frequency
[td=61]Percent
[td=83]Cumulative
Frequency
Cumulative
Percent
20-29
[td=76]168
[td=61]25.77
[td=83]168
[td=84]25.77
30-39
[td=76]400
[td=61]61.35
[td=83]568
[td=84]87.12
40-49
[td=76]80
[td=61]12.27
[td=83]648
[td=84]99.39
50-59
[td=76]4
[td=61]0.61
[td=83]652
[td=84]100.00
Spouse_eth
Spouse_eth
Frequency
Percent
Cumulative
Frequency
Cumulative
Percent
ABC
26
5.09
26
5.09
Korean
2
0.39
28
5.48
Mixed
1
0.20
29
5.68
NativeChinese
419
82.00
448
87.67
Taiwan
1
0.20
449
87.87
White
61
11.94
510
99.80
indonisia
1
0.20
511
100.00
[td=5,1,367]
children
children
[td=76]Frequency
[td=61]Percent
[td=83]Cumulative
Frequency
Cumulative
Percent
0
[td=76]174
[td=61]31.75
[td=83]174
[td=84]31.75
1
[td=76]209
[td=61]38.14
[td=83]383
[td=84]69.89
2
[td=76]165
[td=61]30.11
[td=83]548
[td=84]100.00
[td=5,1,406]
Location
Location
[td=76]Frequency
[td=61]Percent
[td=83]Cumulative
Frequency
Cumulative
Percent
BayArea
[td=76]122
[td=61]21.44
[td=83]122
[td=84]21.44
Canada
[td=76]2
[td=61]0.35
[td=83]124
[td=84]21.79
Chicago
[td=76]27
[td=61]4.75
[td=83]151
[td=84]26.54
China
[td=76]2
[td=61]0.35
[td=83]153
[td=84]26.89
EastCoast
[td=76]165
[td=61]29.00
[td=83]318
[td=84]55.89
Florida
[td=76]9
[td=61]1.58
[td=83]327
[td=84]57.47
LA
[td=76]3
[td=61]0.53
[td=83]330
[td=84]58.00
MiddleOther
[td=76]58
[td=61]10.19
[td=83]388
[td=84]68.19
NewYork
[td=76]50
[td=61]8.79
[td=83]438
[td=84]76.98
Other
[td=76]9
[td=61]1.58
[td=83]447
[td=84]78.56
OtherCountry
[td=76]4
[td=61]0.70
[td=83]451
[td=84]79.26
Seatle
[td=76]18
[td=61]3.16
[td=83]469
[td=84]82.43
Southother
[td=76]11
[td=61]1.93
[td=83]480
[td=84]84.36
Texas
[td=76]44
[td=61]7.73
[td=83]524
[td=84]92.09
WestCoast
[td=76]45
[td=61]7.91
[td=83]569
[td=84]100.00
工作分布:
有生物, 制药有关的都放到了pharm 里。 所有的scientist, research, post doc 都归到 research, 政府工作, 教师 归到了public sector, 在家的妈妈就是那个beatif, 软件给切掉了, 我本来写的是美妈妈们。 任何写了码工, engineer 的都归到了IT, 发考题与professor 都在professor 中( 出乎我意料的多呢) 回答问题中有一位律师, 两位医生。 和数据有关的包括在了statistian 里面, 但是risk analysis 与financial analyst 都包括在了finance 里。
其中IT 还是没有出乎意料的占大头, 达到1/4 的人数。 research 达到10%, 统计师也有9%, 金融与经济加起来有20%, 会计师也有8%。 出乎意料的学生只有不到3%
[td=71]
occup
[td=76]Frequency
[td=61]Percent
[td=83]Cumulative
Frequency
Cumulative
Percent
Graphic
[td=76]1
[td=61]0.38
[td=83]1
[td=84]0.38
IT
[td=76]64
[td=61]24.24
[td=83]65
[td=84]24.62
Lawyer
[td=76]1
[td=61]0.38
[td=83]66
[td=84]25.00
Pharma
[td=76]11
[td=61]4.17
[td=83]77
[td=84]29.17
PublicS
[td=76]15
[td=61]5.68
[td=83]92
[td=84]34.85
account
[td=76]22
[td=61]8.33
[td=83]114
[td=84]43.18
assista
[td=76]2
[td=61]0.76
[td=83]116
[td=84]43.94
beautif
[td=76]13
[td=61]4.92
[td=83]129
[td=84]48.86
businss
[td=76]16
[td=61]6.06
[td=83]145
[td=84]54.92
designe
[td=76]1
[td=61]0.38
[td=83]146
[td=84]55.30
doctor
[td=76]2
[td=61]0.76
[td=83]148
[td=84]56.06
finance
[td=76]24
[td=61]9.09
[td=83]172
[td=84]65.15
managem
[td=76]7
[td=61]2.65
[td=83]179
[td=84]67.80
marketi
[td=76]3
[td=61]1.14
[td=83]182
[td=84]68.94
other
[td=76]4
[td=61]1.52
[td=83]186
[td=84]70.45
profess
[td=76]15
[td=61]5.68
[td=83]201
[td=84]76.14
realtor
[td=76]1
[td=61]0.38
[td=83]202
[td=84]76.52
researc
[td=76]28
[td=61]10.61
[td=83]230
[td=84]87.12
self_em
[td=76]4
[td=61]1.52
[td=83]234
[td=84]88.64
statist
[td=76]23
[td=61]8.71
[td=83]257
[td=84]97.35
student
[td=76]7
[td=61]2.65
[td=83]264
[td=84]100.00
[td=5,1,395]
reasontoUS2
reasontoUS2
[td=76]Frequency
[td=61]Percent
[td=83]Cumulative
Frequency
Cumulative
Percent
immigration
[td=76]8
[td=61]1.32
[td=83]8
[td=84]1.32
marriage
[td=76]104
[td=61]17.22
[td=83]112
[td=84]18.54
other
[td=76]3
[td=61]0.50
[td=83]115
[td=84]19.04
study
[td=76]483
[td=61]79.97
[td=83]598
[td=84]99.01
working
[td=76]6
[td=61]0.99
[td=83]604
[td=84]100.00
那么大家都是什么时候来美国的呢:
[td=85]
initial_year
[td=76]Frequency
[td=61]Percent
[td=83]Cumulative
Frequency
Cumulative
Percent
College
[td=76]228
[td=61]34.60
[td=83]228
[td=84]34.60
Post_deg
[td=76]291
[td=61]44.16
[td=83]519
[td=84]78.76
high_school
[td=76]118
[td=61]17.91
[td=83]637
[td=84]96.66
other
[td=76]22
[td=61]3.34
[td=83]659
[td=84]100.00
一般以上的人是在22 岁或之前来到美国的。 其中18-22 岁的达到34%, 96% 的美女/帅哥们都是在30 岁之前来到美国的。
Personal
Frequency
Percent
Cumulative
Frequency
Cumulative
Percent
4.9
74
14.12
74
14.12
5
142
27.10
216
41.22
8
164
31.30
380
72.52
12
111
21.18
491
93.70
20
29
5.53
520
99.24
41
4
0.76
524
100.00
[td=3,1,236]
Pearson Correlation Coefficients
Prob > |r| under H0: Rho=0
Number of Observations
[td=78]
Initial_age
[td=79]Personal
Initial_age
Initial_age
1.00000
601
0.03370
0.4572
489
Personal
0.03370
0.4572
489
1.00000
524
[td=6,1,309]
Table of initial_year by NoRealEs
initial_year
[td=5,1,224]NoRealEs(NoRealEs)
Frequency
Percent
Row Pct
Col Pct
0
[td=44]1
[td=44]2
[td=44]3+
[td=47]Total
College
[td=44]24
10.17
27.91
39.34
39
16.53
45.35
34.82
14
5.93
16.28
38.89
9
3.81
10.47
33.33
86
36.44
Post_deg
[td=44]25
10.59
22.32
40.98
57
24.15
50.89
50.89
18
7.63
16.07
50.00
12
5.08
10.71
44.44
112
47.46
high_school
[td=44]10
4.24
32.26
16.39
12
5.08
38.71
10.71
3
1.27
9.68
8.33
6
2.54
19.35
22.22
31
13.14
other
[td=44]2
0.85
28.57
3.28
4
1.69
57.14
3.57
1
0.42
14.29
2.78
0
0.00
0.00
0.00
7
2.97
Total
[td=44]61
25.85
112
47.46
36
15.25
27
11.44
236
100.00
Frequency Missing = 423
[td=7,1,417]
Analysis Variable : Personal
occup
[td=34]N Obs
[td=26]N
[td=73]Mean
[td=73]Std Dev
[td=73]Minimum
[td=76]Maximum
Graphic
[td=34]1
[td=26]1
[td=73]4.9000000
[td=73].
[td=73]4.9000000
[td=76]4.9000000
IT
[td=34]64
[td=26]60
[td=73]9.8666667
[td=73]5.3913511
[td=73]5.0000000
[td=76]41.0000000
Lawyer
[td=34]1
[td=26]1
[td=73]12.0000000
[td=73].
[td=73]12.0000000
[td=76]12.0000000
Pharma
[td=34]11
[td=26]10
[td=73]9.3800000
[td=73]4.4243769
[td=73]4.9000000
[td=76]20.0000000
PublicS
[td=34]15
[td=26]13
[td=73]7.6692308
[td=73]4.5497957
[td=73]4.9000000
[td=76]20.0000000
account
[td=34]22
[td=26]21
[td=73]6.1761905
[td=73]1.9232537
[td=73]4.9000000
[td=76]12.0000000
assista
[td=34]2
[td=26]2
[td=73]8.4500000
[td=73]5.0204581
[td=73]4.9000000
[td=76]12.0000000
beautif
[td=34]13
[td=26]2
[td=73]6.4500000
[td=73]2.1920310
[td=73]4.9000000
[td=76]8.0000000
businss
[td=34]16
[td=26]16
[td=73]8.8562500
[td=73]4.2276816
[td=73]4.9000000
[td=76]20.0000000
designe
[td=34]1
[td=26]1
[td=73]5.0000000
[td=73].
[td=73]5.0000000
[td=76]5.0000000
doctor
[td=34]2
[td=26]2
[td=73]20.0000000
[td=73]0
[td=73]20.0000000
[td=76]20.0000000
finance
[td=34]24
[td=26]23
[td=73]12.5173913
[td=73]7.5536055
[td=73]4.9000000
[td=76]41.0000000
managem
[td=34]7
[td=26]7
[td=73]8.4285714
[td=73]5.3184316
[td=73]5.0000000
[td=76]20.0000000
marketi
[td=34]3
[td=26]3
[td=73]7.0000000
[td=73]1.7320508
[td=73]5.0000000
[td=76]8.0000000
other
[td=34]4
[td=26]4
[td=73]7.4500000
[td=73]3.3669967
[td=73]4.9000000
[td=76]12.0000000
profess
[td=34]15
[td=26]14
[td=73]9.2000000
[td=73]4.3858163
[td=73]4.9000000
[td=76]20.0000000
realtor
[td=34]1
[td=26]1
[td=73]4.9000000
[td=73].
[td=73]4.9000000
[td=76]4.9000000
researc
[td=34]28
[td=26]28
[td=73]6.7321429
[td=73]2.5461741
[td=73]4.9000000
[td=76]12.0000000
self_em
[td=34]4
[td=26]3
[td=73]22.0000000
[td=73]18.0831413
[td=73]5.0000000
[td=76]41.0000000
statist
[td=34]23
[td=26]23
[td=73]7.6521739
[td=73]2.4607592
[td=73]5.0000000
[td=76]12.0000000
student
[td=34]7
[td=26]4
[td=73]4.9000000
[td=73]0
[td=73]4.9000000
[td=76]4.9000000
Analysis Variable : Personal
Location
N Obs
N
Mean
Std Dev
Minimum
Maximum
BayArea
122
92
9.7195652
5.3860267
4.9000000
41.0000000
Canada
2
2
8.0000000
0
8.0000000
8.0000000
Chicago
27
25
7.6280000
2.8385031
4.9000000
12.0000000
China
2
2
14.0000000
8.4852814
8.0000000
20.0000000
EastCoast
165
136
8.7345588
4.8666877
4.9000000
41.0000000
Florida
9
7
5.4285714
1.1338934
5.0000000
8.0000000
LA
3
3
7.3000000
4.0706265
4.9000000
12.0000000
MiddleOther
58
47
7.5319149
4.0828436
4.9000000
20.0000000
NewYork
50
41
9.3536585
4.4382484
4.9000000
20.0000000
Other
9
7
5.8285714
1.4840421
4.9000000
8.0000000
OtherCountry
4
3
4.9333333
0.0577350
4.9000000
5.0000000
Seatle
18
13
8.2230769
2.4993845
4.9000000
12.0000000
Southother
11
10
7.2900000
2.8395813
4.9000000
12.0000000
Texas
44
37
8.5621622
6.1610944
4.9000000
41.0000000
WestCoast
45
39
7.0923077
2.6720172
4.9000000
12.0000000
工资分布与年龄层: 20-29 岁还是主要集中在 0 - 12 万, 其中主要是5到12 万这一段, 超过12 万的达到15% , 少于5万占1/4。 32% 在5-8 万中。
30-39 小与5万明显下降, 只有10%, 32% 在 8-12 万中, 所以随着年龄增加, 薪水会张一些。 12万以上达到30%, 不到1/3 的人在12 万以上。
40-49 更多人达到 8 万以上, 12万以上达到33%, 1/3 的人达到 12 万以上。 40-49 人数太少, 不做比较。目前数据只能做到这个啦。
Table of Age_group by Personal
Age_group(Age_group)
Personal
Frequency
Percent
Row Pct
Col Pct
4.9
5
8
12
20
41
Total
20-29
32
6.11
24.43
43.24
43
8.21
32.82
30.28
34
6.49
25.95
20.73
19
3.63
14.50
17.12
2
0.38
1.53
6.90
1
0.19
0.76
25.00
131
25.00
30-39
38
7.25
11.69
51.35
86
16.41
26.46
60.56
105
20.04
32.31
64.02
74
14.12
22.77
66.67
20
3.82
6.15
68.97
2
0.38
0.62
50.00
325
62.02
40-49
4
0.76
6.15
5.41
13
2.48
20.00
9.15
23
4.39
35.38
14.02
17
3.24
26.15
15.32
7
1.34
10.77
24.14
1
0.19
1.54
25.00
65
12.40
50-59
0
0.00
0.00
0.00
0
0.00
0.00
0.00
2
0.38
66.67
1.22
1
0.19
33.33
0.90
0
0.00
0.00
0.00
0
0.00
0.00
0.00
3
0.57
Total
74
14.12
142
27.10
164
31.30
111
21.18
29
5.53
4
0.76
524
100.00
Frequency Missing = 135
[td=7,1,430]
Analysis Variable : Personal
Age_group
[td=34]N Obs
[td=29]N
[td=73]Mean
[td=66]Std Dev
[td=72]Minimum
[td=76]Maximum
20-29
[td=34]168
[td=29]131
[td=73]7.2732824
[td=66]4.2120126
[td=72]4.9000000
[td=76]41.0000000
30-39
[td=34]400
[td=29]325
[td=73]8.6960000
[td=66]4.7218120
[td=72]4.9000000
[td=76]41.0000000
40-49
[td=34]80
[td=29]65
[td=73]10.0553846
[td=66]5.9290606
[td=72]4.9000000
[td=76]41.0000000
50-59
[td=34]4
[td=29]3
[td=73]9.3333333
[td=66]2.3094011
[td=72]8.0000000
[td=76]12.0000000
[td=5,1,431]
Personal_annual
Personal_annual
[td=76]Frequency
[td=61]Percent
[td=83]Cumulative
Frequency
Cumulative
Percent
$120000 - $200000
[td=76]27
[td=61]23.08
[td=83]27
[td=84]23.08
$200000 - $400000
[td=76]8
[td=61]6.84
[td=83]35
[td=84]29.91
$400000+
[td=76]1
[td=61]0.85
[td=83]36
[td=84]30.77
$50000 - $80000
[td=76]18
[td=61]15.38
[td=83]54
[td=84]46.15
$80000 - $120000
[td=76]30
[td=61]25.64
[td=83]84
[td=84]71.79
49000
[td=76]8
[td=61]6.84
[td=83]92
[td=84]78.63
NotWorking
[td=76]25
[td=61]21.37
[td=83]117
[td=84]100.00