学术造假,
捞钱,
搞女人,
应该不仅仅是他一人在这么做,
这是大环境,
为啥胡搞到现在才被人爆出来?
可以深思一下
pwwq 发表于 12/3/2019 12:43:49 PM [url=https://forums.huaren.us/showtopic.aspx?topicid=2479020&postid=82029914#82029914][img][/img][/url]
里面有他自己的学生或者打算申请进他组的吗?
学术造假,
捞钱,
搞女人,
应该不仅仅是他一人在这么做,
这是大环境,
为啥胡搞到现在才被人爆出来?
可以深思一下
pwwq 发表于 12/3/2019 12:43:49 PM [url=https://forums.huaren.us/showtopic.aspx?topicid=2479020&postid=82029914#82029914][img][/img][/url]
美国不就是这样的吗?华人板上就有女ID这么轮着睡啊,然后在心版发的帖子一堆ID们点赞。
chengcheng 发表于 12/3/2019 2:06:10 PM
暴露了啥?你还真不见外,以为华人是独轮运的老巢了。。。
艾妞妞代言人 发表于 12/3/2019 2:19:54 PM
12月2日,一女子在网上称,“北大数学中心”一助理教授冯仁杰与多名女子发生不正当关系。3日,涉事教师亲属冯某回应北京青年报记者称,网上绝大多数爆料是虚假的,目前冯某已报警处理。北京大学教师职业道德和纪律委员会办公室回应称正展开初查。感谢互联网,让这种臭虫浮出水面
2日,一网友称,“北大数学中心”教师冯某在与自己交往期间,同时与多名女子发生不正当关系。北青报记者了解到,网友文中所称“北大数学中心”实为北京国际数学研究中心。北青报记者在其官网看到,被爆料教师冯某2015年回国后,担任该中心助理教授至今。
3日,记者联系到冯某。一位自称冯某亲属的男子告诉记者,网上的绝大部分爆料不属实,目前冯某已报警处理,并且也请了律师。该男子表示,此事对冯某影响很大,他昨晚一晚都没好好休息,精神状态不太好。
2日,北京大学教师职业道德和纪律委员会办公室在北大未名BBS上回应称,学校教师职业道德和纪律委员会办公室收到关于北京国际数学中心某教师的举报信,依据《北京大学教师违规违纪调查处理试行办法》正在开展初查。
事件回顾
近日,一则帖子在北大未名BBS和微博引起了巨大的轰动。
[size=0.36][size=0.28]打开网易新闻 查看更多精彩图片 [size=0.19]
一位微博名为藕色23645的网友爆料北大数学中心博导冯仁杰劈腿数十人,插足本科生、出轨已婚女!
[size=0.36]据悉,这位爆料人为北大经济学院14级学生,这次敢在微博、BBS上爆料,估计也是决定破釜沉舟!
[size=0.36]以下为微博正文:
[size=0.36]此事一经发酵,迅速登上了未名BBS的头条:
[size=0.36]紧接着,网友继续爆料与冯仁杰的对话
[size=0.36]
[size=0.36]
[size=0.36]
[size=0.36]
[size=0.36]冯仁杰教授到底是什么样的人呢?
冯仁杰教授简介(北大官网)
[size=0.36]冯仁杰: 中国科学技术大学本科、Johns Hopkins 大学硕士、Northwestern Universit 博士,McGill University 和 University of Maryland 博士后。现为北京大学国际数学研究中心研究员,主要研究方向为随机几何和数学物理。
北大也在BBS上给出了回应
[size=0.36]全文如下:
各位老师、同学:
近日,学校教师职业道德和纪律委员会办公室收到关于北京国际数学中心某教师的举报信,依据《北京大学教师违规违纪调查处理试行办法》正在开展初查。特此说明。
北京大学教师职业道德和纪律委员会办公室
2019年12月2日
网友讨论
理性派:
[size=0.36]有网友认为:该教师任14级经院概统授课教师,授课时间为16年春季学期,与当事人结婚时间16年非常接近,他支持冯老师的恋爱自由,但是师生恋违反学校规定,而且教师的婚姻情况是校党委教师工作部有权知情和调查的吧,为什么会隐瞒这么久?
[size=0.36]批评派
[size=0.36]
[size=0.36]
[size=0.36]一边劈腿那么多人,一边让自己的同事介绍女朋友,这博导真是够可以的!
吃瓜派
[size=0.36]
[size=0.36]
[size=0.36]
[size=0.36]
werwer358 发表于 12/3/2019 8:37:47 AM
---发自Huaren 官方 iOS APP
看到后来 一天约那么多。。。看起来就脑袋疼了。。不是高智商估计还handle不了
小仙女 发表于 12/3/2019 5:31:57 PM [url=https://forums.huaren.us/showtopic.aspx?topicid=2479020&postid=82033035#82033035][img][/img][/url]
单纯觉得一个人要教书做学问还要同时跟这么多女人纠缠真是好难。奇才
baby.chen 发表于 12/3/2019 6:29:09 PM [url=http://forums.huaren.us/showtopic.aspx?topicid=2479020&postid=82033593#82033593][/url]
University of Science and Technology of China, Bachelor, 2002-2006
Johns Hopkins University, Master, 2006-2009
Northwestern University, Ph. D (advisor: [url=http://www.math.northwestern.edu/~zelditch/]S. Zelditch[/url]), 2009-2012
McGill University, postdoc, 2012-2013
Maryland University College Park, Brin postdoc, 2013-2015
BICMR, Peking University, assistant professor, 2015-
Recent research
For the last two years, I am interested in the following three topics,
1. SYK model:
With [url=http://tian.bicmr.pku.edu.cn/index.htm]Gang Tian[/url] and Dongyi Wei, we have three papers on the global distribution of eigenvalues of SYK model such as the global density of eigenvalues, the central limit theorem and the concentration of measure theorem. The SYK model a random matrix model which is a simple model of the black hole and it's very topical in physics recently, and it's also a quantum spin glass model. There are still many interesting open problems in this new emerging area, such as the behaviors of partition function (recall the Parisi formula in the spin glass) and the largest eigenvalue.
2. Random matrices:
a. We study the smallest gaps for the circular beta-ensemble and GOE, and largest gaps for CUE and GUE, in all cases, we proved that the extreme gaps are asymptotic to the Poisson distribution after rescaling, as a consequence, we derived the rescaling limits of extreme gaps.
b. We derive the Berry-Esseen theorem for the number counting function of circular beta-ensemble, which implies the central limit theorem of number of points in arcs. We also derived the uniform bound for the variance.
3. Random waves:
With [url=http://webee.technion.ac.il/Sites/People/adler/]R. Adler[/url], we get an explicit formula for the supremum of random spherical harmonics by Weyl's tube formula, where we proved that unexpectedly the critical radius of the embedding/immersion of the sphere to higher dimensional sphere by the spherical harmonics has an explicit limit given by the Bessel function, although the image become more and more twisted. The result is universal, i.e., true for more general Riemannian manifolds with assumptions.
Random matrix theory
1.[url=https://arxiv.org/abs/1807.02149]Large gaps of CUE and GUE[/url] (with D. Wei)
2.[url=https://arxiv.org/abs/1806.01555]Small gaps of circular beta-ensemble[/url](with D. Wei)
3.[url=http://bicmr.pku.edu.cn/~renjie/small%20gaps%20of%20GOE_final_revision.pdf]Small gaps of GOE[/url] (with G. Tian and D. Wei), to appear in GAFA
4.[url=https://arxiv.org/abs/1905.09448]Normality of circular beta-ensemble[/url](with G. Tian and D. Wei)
5.[url=https://arxiv.org/abs/1801.10073]Spectrum of SYK model[/url] (with G. Tian and D. Wei), Peking Mathematical J (2019) 2:41-70.
6.[url=https://arxiv.org/abs/1806.05714]Spectrum of SYK model II: Central limit theorem [/url](with G. Tian and D.Wei)
7.[url=https://arxiv.org/abs/1806.04701]Spectrum of SYK model III: Large deviations and concentration of measures[/url](with G. Tian and D. Wei), to appear in Random matrices: Theory and Applications.
Random geometry
1.[url=https://arxiv.org/abs/1702.02767]Critical radius and supremum of random spherical harmonics[/url] (with R. Adler), Annals of Probability, 2019, Vol.47, No.2, 1162-1184.
2.[url=https://arxiv.org/abs/1709.00691]Critical radius and supremum of random spherical harmonics II[/url]
(with X. Xu and R. Adler), Electronic Communications in Probability, Volume 23 (2018), paper no. 50, 11 pp.
3.[url=https://arxiv.org/abs/1009.5142]Large deviations for zeros of P(\phi)_2 random polynomials[/url](with S. Zelditch), J. Stat. Phys (2011) 143: 619-635.
4.[url=https://arxiv.org/abs/1212.4762]Critical values of random analytic functions on complex manifolds[/url]
(with S. Zelditch), Indiana Univ. Math. J.63. (2014). no.3.,651-686.
5.[url=https://arxiv.org/abs/1303.4096]Median and mean of the Supremum of L^2 normalized random [/url]
[url=https://arxiv.org/abs/1303.4096]holomorphic fields[/url] (with S. Zelditch), J. Funct. Anal. 266 (2014), no. 8, 5085-5107.
6.[url=https://arxiv.org/abs/1112.3993]Random Riesz energies on compact Kahler manifolds[/url](with S. Zelditch), Trans. Amer. Math. Soc., Vol 365, no. 10, 5579-5604, (2013).
7.[url=https://arxiv.org/abs/1210.4829]Critical values of Gaussian SU(2) random polynomials[/url](with Z. Wang), Proceeding of AMS, Vol 144, no 2, 2016, 487-502.
8.[url=https://arxiv.org/abs/1604.07693]Correlations between zeros and critical points of random analytic[/url][url=https://arxiv.org/abs/1604.07693]functions[/url], Trans. Amer. Math. Soc.371 (2019), no. 8, 5247-5265.
9.[url=https://arxiv.org/abs/1511.02383]Conditional expectations of random holomorphic fields on Riemann surfaces[/url], IMRN, Volume 2017, Issue 14, 4406-4434.
10. [url=https://arxiv.org/abs/1908.00730]Zeros of repeated derivatives of random polynomials[/url] (with D. Yao), Anal. PDE 12 (2019), no. 6, 1489-1512.
Geometric analysis and PDEs
1.[url=https://arxiv.org/abs/1101.5133]Periodic solutions of Abreu's equation[/url] (with G. Szekelyhidi), Math. Res. Lett. 18 (2011), no. 6, 1271-1279.
2.[url=https://arxiv.org/abs/1210.2190]The global convergence of the Calabi flow on Abelian varieties[/url]
(with H. Huang), J. Funct. Anal. 263 (2012), no. 4, 1129-1146.
3.[url=https://arxiv.org/abs/0910.2311]Bergman metrics and geodesics in the space of Kahler metrics on[/url]
[url=https://arxiv.org/abs/0910.2311]principally polarized Abelian varieties[/url], Journal of the Institute of Mathematics of Jussieu (2012) Volume 11, Issue 01, 1-25.
4.[url=https://arxiv.org/abs/0809.2436]Szasz analytic functions and noncompact Kahler toric manifolds[/url],
Journal of Geometric Analysis (2012), Volume 22, Number 1, 107-131.
Email: [email][email protected][/email]
样子不差 不明真相的群众如是说 Heiniu 发表于 12/3/2019 6:54:00 PM [url=http://forums.huaren.us/showtopic.aspx?topicid=82033793&postid=82033793#82033793][/url]
你需要登录后才可以编辑
登录 | 注册